Rotational Spectrum and ¹⁴N-Quadrupole Coupling Constants of Orthofluorobenzonitrile, a Microwave Fouriertransform Study

Olaf Böttcher and Dieter H. Sutter

Abteilung Chemische Physik im Institut für Physikalische Chemie der Christian-Albrechts-Universität zu Kiel

Z. Naturforsch. 41 a, 955-958 (1986); received May 3, 1986

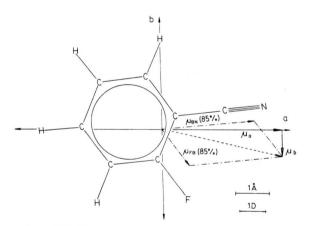
Seventyseven a-type rotational transitions of Orthofluorobenzonitrile were observed and assigned in the 8-25 GHz frequency range. The spectrum was recorded using the high resolution microwave Fourier transform spectrometer constructed at Kiel University. For most transitions the ¹⁴N quadrupole hfs patterns could be fully resolved. The spectroscopic constants obtained by a fit to the observed hfs-center frequencies and to the observed hfs multiplet splittings are: A=2940.745(12) MHz, B=1512.699(1) MHz, C=998.633(1) MHz (rotational constants) and $\chi_{aa}=-4.114(17)$ MHz, $\chi_{bb}-\chi_{cc}=0.383(34)$ MHz (¹⁴N quadrupole coupling constants). The rotational spectrum of a low lying vibrational state could be also assigned.

Experimental

The high sensitivity, high resolution microwave Fourier transform spectrometer developed by H. Dreizler and coworkers [1, 2, 3, 4] was used to record the spectrum. The sample, a colourless liquid at room temperature, was obtained from Aldrich Chemie, Steinheim (purity > 98%) and was used after several bulb to bulb destillations to remove inert gases. Typical sample pressures within the X-through K-band waveguides absorption cells were below 2 mTorr and the cell temperatures ranged between - 20 °C and - 39 °C.

Assignment and Analysis of the Spectrum

To facilitate the assignment, the spectrum was predicted from a blend of the structures of Fluorobenzene [5], Benzonitrile [6] and 1,2-Difluorobenzene [7] as shown in Figure 1. Also shown in Fig. 1 is our first guess for the molecular electric dipole moment. It results from a vector addition of the dipole moments of Fluorobenzene [8] and Benzonitrile [9], both reduced by 15% to account for the mutual interaction of the electronegative substituents [10].


From the predicted dipole moment components, $\mu_a = 4.4 \text{ D}$, and $\mu_b = 0.7 \text{ D}$ (1 D $\cong 3.33564 \times 10^{-30}$ Cm), it was concluded that the a-type amplitude

Reprint requests to Prof. Dr. D. H. Sutter, Institut für Physikalische Chemie, Universität Kiel, Olshausenstr. 40, D-2300 Kiel.

spectrum should be about 40 times more intense than the b-type transitions.

In Fig. 2 we present a recording of the 10868.8 MHz to 10872.8 MHz region of the spectrum in order to demonstrate the typical resolution and signal to noise ratio obtained in the present investigation.

For the vibronic ground state in total 77 different rotational transitions, most split by the ¹⁴N quadru-

A_{pred}: 2919.157 B_{pred}: 1510.399 C_{pred}: 995.379 [MHz]

Fig. 1. To scale drawing of the approximate structure, a blend of the structures of Fluorobenzene (FB) [5], Benzonitrile (BN) [6] and 1,2-Difluorobenzene [7], which was used for a first prediction of the rotational spectrum. Also given are the rigid rotor rotational constants calculated from the structure and the known atomic masses and the predicted molecular electric dipole moments (compare text).

0340-4811 / 86 / 0700-0955 \$ 01.30/0. - Please order a reprint rather than making your own copy.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

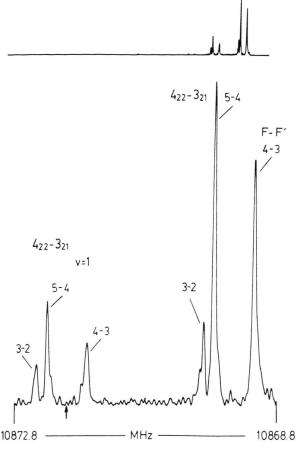


Fig. 2. 25 MHz range (top) and enlarged 4 MHz portion of the same Fourier transform power spectrum showing the 4_{22} – 3_{21} hfs multiplets of the vibronic ground state and a low lying vibrational satellite. Note that the position of the pump frequency (indicated by the small vertical arrow) favours the polarization of the v=1 satellite multiplet. – Experimental conditions were: p=0.4 mTorr, T=-23.5 °C, pulse length: 50 ns, carrier frequency of pulse: 10.872 MHz, sampling interval: 20 ns, sampling: 1024 data points, 3072 zeros added prior to Fourier transformation, 3840 k averaging cycles.

pole hfs interaction, were analysed in detail. In Table I we give a small portion of the recorded spectrum including some low J transitions (all split by the ¹⁴N quadrupole hfs interaction) as well as the high J rotational transitions shown in Figure 3. The latter show very narrow hfs-multiplets which could not be resolved with our present instrumentation. (A complete list is deposited under No. TNA2, O. Böttcher and D. H. Sutter at the Universitäts-bibliothek, University of Kiel.)

Table 1. Some of the recorded vibronic ground state rotational transitions. The complete list is given in [17] and is available upon request. The frequencies are given in MHZ. $v_{\rm center}$ are the hypothetical center frequencies of the corresponding complete hfs pattern [18]. (Note that only the strongest satellites are included in the table.) $\Delta v_{\rm exp}$ are the measured splittings between adjacent satellites to which the quadrupole coupling constants (Table 2) were fitted. $\Delta v_{\rm calc}$ are the corresponding splittings as calculated from the optimized molecular parameters given in Table 2. A mean square deviation of 11 kHz was obtained for the complete set of the center frequencies as well as for the complete set of the hyperfine splittings.

F-F'	$v_{\rm exp}$	$\Delta v_{\rm exp}$	$\Delta v_{\rm calc}$	$v_{\rm center}$
$\{ \frac{4-3}{2-1} \}$	8 222.792	0.335	0.028 0.316	8 222.706
5-4 4-3 3-2	10 869.758 10 869.160 10 869.905			10 869.595
	9 128.147 9 128.003	0.133		9 128.120
5-4 $4-3$	10 786.933 10 786.802	$0.131 \\ -0.062$	$0.118 \\ -0.049$	10 786.878
5-4 $4-3$	8 827.809 8 827.651	$0.158 \\ -0.096$		8 827.750
5-4 $4-3$	9 954.464 9 953.920	$0.548 \\ -0.697$		9 954.318
$\{6-5\}$	11 079.220	0.068		11 079.208
$\left. \begin{array}{c} 6-5 \\ 4-3 \end{array} \right\}$	12 301.001	0.269		12 300.920
6-5 5-4 \	10 906.548 10 906.474	0.074	0.044 -0.025	10 906.516
7 7	20 975.357 20 972.897 22 971.454 22.970.514 24 969.989 24 968.136 24 967.790			
	3-2 5-4 4-3 3-2 5-4 4-3 3-2 5-4 4-3 3-2 5-4 4-3 3-2 5-4 4-3 6-5 5-4 6-5	4-3	4-3	4-3 { 2-1 } { 3-2 } 8 222.792

The spectrum was analysed by an iterative treatment of the centrifugally distorted rotor (program ZFAP4, written by V. Typke [11]) and the hfs interaction (program HT1NQ, written by G. E. Herberich [12]) similar to the procedure described in [13]. The resultant rotational constants, centrifugal distortion constants and ¹⁴N quadrupole coupling constants are given in Table 2. Also given are the effective rotational constants and quadrupole coupling constants, which fit to the vibrational

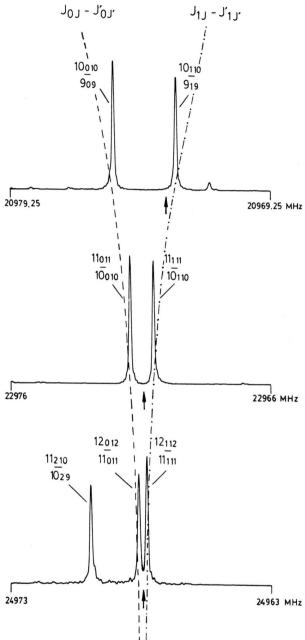


Fig. 3. Three 10 MHz sections of 50 MHz recordings in the K-band region (18–25 GHz) which show how the J_{0J} – $J'_{0J'}$ and J_{1J} – $J'_{1J'}$ rotational frequencies collapse with increasing J. (With increasing J, these maximum- K_+ transitions more and more approach the limiting oblate top case.)

Table 2. Rotational constants, centrifugal constants [11, 19] and ¹⁴N-nuclear quadrupole coupling constants fitted to the complete set of 77 vibronic ground state rotational transitions observed in the present investigation (upper half), and effective rigid rotor rotational constants and quadrupole coupling constants fitted to the vibrational satellite hfs multiplets of the first excited state of a low bending vibration (most likely the V_{23} or V_{33} mode in the assignment of Green and Harrison [14]).

A B C κ	2940.745 1512.699 998.653 - 0.46621	$\begin{array}{ll} \pm \ 0.012 & \text{MHz} \\ \pm \ 0.001 & \text{MHz} \\ \pm \ 0.001 & \text{MHz} \\ \end{array}$
D_{J} D_{JK} D_{K} d_{1} d_{2} $\chi^{+} = \chi_{bb} + \chi_{cc}$ $\chi^{-} = \chi_{bb} - \chi_{cc}$ χ_{aa} χ_{bb} χ_{cc}	0.0261 0.5850 - 1.0106 - 0.0146 - 0.0094 4.1141 0.3826 - 4.1141 2.2484 1.8658	± 0.0093 MHz ± 0.0442 MHz ± 1.0400 MHz ± 0.0044 kHz ± 0.0024 kHz ± 0.0166 MHz ± 0.0338 MHz ± 0.0166 MHz ± 0.027 MHz ± 0.027 MHz
A (v = 1) $B (v = 1)$ $C (v = 1)$	2941.493 1513.076 998.905 - 0.47063 4.239 0.437 - 4.239 2.338 1.901	± 0.830 MHz ± 0.085 MHz ± 0.088 MHz ± 0.063 MHz ± 0.205 MHz ± 0.063 MHz ± 0.063 MHz ± 0.152 MHz ± 0.152 MHz

Table 3. 14 N-hfs multiplets arising from molecules presumably in the v = 1 state of the lowest vibrational bending mode.

$J_{KK_+} - J'_{K'K'_+}$	F-F'	$v_{\rm exp}$	$\Delta v_{\rm exp}$	$\Delta v_{\rm calc}$	$v_{\rm center}$
3 ₁₂ -2 ₁₁	$\frac{4-3}{2-1}$	8 225.138	0.365	0.020 0.323	8 225.044
4 ₂₂ -3 ₂₁	3-2 5-4 4-3 3-2	8 224.773 10 872.326 10 871.711 10 872.477	0.615		10 872.159
$4_{04} - 3_{03}$	$5-4 \ 4-3 \ 3-2$	9 130.362 9 130.222	0.140	$-0.028 \\ 0.125$	9 130.345
4 ₁₄ -3 ₁₃	5-4 4-3 3-2	8 829.670 8 829.535 8 829.604	0.135 -0.069	0.145 -0.092	8 829.619
5 ₁₅ -4 ₁₄	6-5 5-4 4-3	10 909.790 10 909.721	0.069	0.045 -0.026	10 909.760
5 ₂₄ -4 ₂₃	$\begin{cases} 6-5 \\ 4-3 \end{cases}$	12 303.180	0.266	-0.026 0.277	12 303.101
$5_{05} - 4_{04}$	5-4	12 302.914 11 082.110	5.200	0.277	

satellite spectrum observed in the X-band region. From the relative intensities (I(v=1)/I(v=0) = 0.40 ± 0.05) and the absolute temperature (T = 249 \pm 2 K for the X-band spectra), the corresponding excited vibrational state should be approximately 158(20) cm⁻¹ above the ground state, which falls into the range of the 151 cm⁻¹ bands assigned earlier to the V_{23} and V_{33} normal vibrations by Green and Harrison [14].

A Stark effect analysis (→ electric dipole moments), a rotational Zeeman effect analysis (→ molecular g- and susceptibility tensor and substituent effects on the field induced π -electronic ring currents [15]) and a search for at least some of the weak btype transitions by a double resonance technique as described in [16] are planned for the near future *.

- [1] G. Bestmann, H. Dreizler, H. Mäder, and U. Andresen, Z. Naturforsch. 35, 392 (1980).
- [2] G. Bestmann and H. Dreizler, Z. Naturforsch. 37a, 58
- [3] G. Bestmann, H. Dreizler, E. Fliege, and W. Stahl, J. Mol. Struct. 97, 215 (1983).
- [4] W. Stahl, G. Bestmann, H. Dreizler, U. Andresen, and R. Schwarz, Rev. Sci. Instr. 56, 1759 (1985)
- [5] L. Nygaard, I. Bojesen, T. Pedersen, and J. Rastrup-
- Andersen, J. Mol. Struct. 2, 209 (1968).
 [6] B. Bak, D. Christensen, W. B. Dixon, L. Hansen Nygaard, and J. Rastrup-Andersen, J. Chem. Phys. 37, 2027 (1962).
- [7] S. Doraiswamy and S. D. Sharma, J. Mol. Spec. 102, 81 (1983).
- [8] D. G. de Kowalewski, P. Kökeritz, and H. Selen, J. Chem. Phys. 37, 1438 (1959).
- [9] D. R. Lide, J. Chem. Phys. 22, 1577 (1954).
- [10] J. Spieckermann and D. H. Sutter, Z. Naturforsch. **40 a**, 864 (1985).

Acknowledgements

We would like to thank Prof. Dr. H. Dreizler for making this investigation possible, for his constant advice concerning the Fourier transform spectrometer and for critically reading the manuscript. Funding by Deutsche Forschungsgemeinschaft and Fonds der Chemie is gratefully acknowledged. The numerical calculations were carried out at the PDP 10 computer of the University of Kiel Computer center.

- * The "experimental frequencies" given in Table 1 are the result of lineshape analyses of the measured fouriertransform spectra. (Program SIMULINE by Merke et al., (to be published).) In these analyses arteficial transient decays with adjustable phases, initial amplitudes and decaytimes are superimposed so as to give an optimal fit of the fouriertransforms of the observed and of the arteficial transients.
- [11] V. Typke, J. Mol. Spectr. 63, 170 (1976).
- [12] G. E. Herberich, Z. Naturforsch. 22a, 593 (1967).
- [13] D. Hübner, E. Fliege, and D. H. Sutter, Z. Naturforsch. 38 a, 1238 (1983)
- [14] J. H. S. Green and D. J. Harrison, Spectrochim. Acta A 32, 1279 (1976).
- [15] W. H. Stolze, M. Stolze, D. Hübner, and D. H. Sutter, Z. Naturforsch. 37 a, 1165 (1982).
- [16] M. Stolze, D. Hübner, and D. H. Sutter, Z. Naturforsch. 36a, 886 (1981).
- [17] O. Böttcher, Diplom-Thesis, Kiel 1986. The thesis contains a complete listing of all transitions assigned
- [18] H. D. Rudolph, Z. Naturforsch. 23a, 540 (1968).
- [19] J. K. G. Watson, Aspects of Quatratic and Sextic Centrifugal Effects, in: Vibrational Spectra and Structure, Vol. 6, Elsevier, Amsterdam 1977.